Dead sea like giant negative t wave associated with subarachnoid hemorrhage

Recep Kurt¹, Hakan Güneş¹

¹ Sivas Numune Hospital, Department of Cardiology, MD, Sivas, Turkey

Abstract

Subarachnoid hemorrhage is a catastrophic neurological event. Rupture of an aneurysm results it. In addition to neurological signs and symptoms ECG abnormalities reported. These ECG findings reported are prolonged QTc, ST segment abnormalities, T wave inversion, abnormal U wave, bradycardia, tachycardia, Premature ventricular complex, Premature atrial complex, atrial fibrilation, VT, AV blocks. We described a patient with subarachnoid hemorrhage showed giant inverted T wave.

Keywords: Subarachnoid hemorrhage, T wave inversion

Introduction

Subarachnoid hemorrhage is a catastrophic neurological event. Rupture of an aneurysm results it. In addition to neurological signs and symptoms ECG abnormalities reported. These ECG findings reported are prolonged QTc, ST segment abnormalities, T wave inversion, abnormal U wave, bradycardia tachycardia, Premature ventricular complex, Premature atrial complex, atrial fibrillation, VT, AV blocks. We described a patient with subarachnoid hemorrhage showed giant inverted T wave. Generally inverted T waves are related with acute coronary syndromes. Additionally, T wave inversion occurs in patients with left ventricle hypertrophy, acute myocarditis, WPW syndrome, acute pulmonary embolism, pericarditis, electrolyte disturbances, on treatment with digoxin and Yamaguchi syndrome.

Case Report

64-year old woman admitted to the emergency department with sudden loss of consciousness and left hemiparesis. The blood pressure was 180/120 mmHg with a heart rate of 78 bpm. Her ECG showed global very widely splayed and very deeply inverted T-waves with prolonged QT (QTc: 640 ms) (Figure 1). Cranial CT showed subarachnoid hemorrhage.

Standard biochemical parameters were in normal limits except serum potassium level of 3.1 mg/dL and leukocytosis on complete blood count. Bilateral basal crackling rales in the lungs were detected but the echocardiography, cardiac markers and the renal parameters were all in normal limits. The patient was entubated after a short period after admission and she died after a short time of deterioration.

Discussion

T wave is the electrocardiographic manifestation of ventricular repolarization. Any reason disrupting ventricular repolarisation just like acute coronary syndromes, left ventricular hypertrophy, pulmonary embolism, electrolyte disturbances and cerebrovascular events eventuate T wave abnormalities. Subarachnoid hemorrhage is usually accompanied by electrocardiographic abnormalities including the T-wave abnormalities and it’s thought that these changes are caused by increased sympathetic and vagal tone leading to aberrant repolarisation, probably secondary to myocyte injury and contraction band necrosis.

Neurogenic ECG alterations are often transient. It causes diagnostic problems, ECG findings in neurogenic problems can mimic acute myocardial infarction. It is important to avoid inappropriate therapies. An imbalance of autonomic cardiovascular control and increased....

Figure 1: Her ECG showed global very widely splayed and very deeply inverted T-waves with prolonged QT
circulating local myocardial tissue catecholamines. Several experience investigation reported that a sudden increase in intracranial pressure occurs that a massive sympathetic discharge. Experimental studies suggest that a large amount of norepinephrin is released during sudden neurologic problems. Alterations in cardiac depolarisation and repolarisation reported 74% of patient with cerebrovascular events. Experimental studies implicates that insular cortex is responsible in cardiovascular control and heart chronotropik organisation.

Studies suggest that its involvement occurs neurogenic ECG alterations. Porter et al. found that stimulation of the posterolateral hypothalamus not only induced rhythm abnormalities but also caused repolarisation changes. Attar and colleagues found that stimulation of the anterior hypothalamus produced ST elevation and deepening of T waves. Thus, hypothalamic stimulation is capable of causing both arrhythmias and a variety of ECG changes which mimic acute myocardial injury or ischemia. In a study by Estanol et al. rhythm and repolarisation changes were created in dogs by introducing blood into the subarachnoid space.

Rudehill et al. ECGs were prospectively studied on 406 patients with subarachnoid hemorrhagiae. Three hundred thirty one patients (82%) had an abnormal ECG. The predominant findings were U wave changes (47%). T wave abnormalities (32%), prolonged QTc interval (24%), and ST segment depression (15%). Stober et al. showed that ECG abnormalities in patients with subarachnoid hemorrhagiae were interested in arterial spasm on the brain. Several studies revealed electrocardiographic abnormalities related with subarachnoid hemorrhagiae.

In conclusion; acute ischemic cardiac events show electrocardiographic abnormalities. T wave abnormalities also can often seems as a result of acute cardiac problems. On the other hand acute cerebrovascular events can mimic electrocardiographic abnormalities in patients with acute cardiac problems. As a result physician must be aware about these ECG similarities. Otherwise, these ECG abnormalities can cause inappropriate therapies.

References

2. Nathan MA, Reis DJ. Fulminating arterial hypertension with pulmonary edema from release of adrenomedullary catecholamines after lesions of anterior hypothalamus in the rat. Circ Res

Received: 09/07/2016
Accepted: 30/03/2017
Published: 15/06/2017

Disclosure and conflicts of interest:
Conflicts of interest were not reported.

Corresponding author:
Dr. Hakan Güneş
Mail: drhakangunes83@hotmail.com